If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56b^2-23b-63=0
a = 56; b = -23; c = -63;
Δ = b2-4ac
Δ = -232-4·56·(-63)
Δ = 14641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14641}=121$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-121}{2*56}=\frac{-98}{112} =-7/8 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+121}{2*56}=\frac{144}{112} =1+2/7 $
| |4x-5|+9=2 | | 14x+12=6x+12 | | x/30-15/3=60 | | 6x-21=x+9 | | X+9x-36=0 | | 2p^2-105=11p | | 9z-3(6-5z)=z-2(3z+9) | | R^2-8r-58=7 | | A^2-20a+13=-6 | | u÷6=78 | | N^2-12n-10=3 | | P^2+20p-61=8 | | 5X=X+2-3y | | 2y+1=3y-8 | | a=2+4/5 | | -2(3x+1)-5=x+14-4x | | 2x+6=6(6x+1) | | 3x-5+x=19-2x | | (v+5)^2=2v^2+v+45 | | -8x=241 | | X=(4m-4)*3 | | 2x+3/3=3x-8/2 | | C(x)=30.25-0.06x | | 5a-6/3=12 | | 26214+11.75x=24.50 | | 3+4x+7x=135 | | 2x2-8x-13=0 | | 3x-2/x=4 | | 7/4=x-3/x+3 | | 55.98+.14x=55.98+.12x | | X=(-3+2)x21 | | 7x+5(x+5)=-35 |